首页> 外文OA文献 >Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil
【2h】

Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil

机译:根际活动和大气甲烷浓度驱动温带森林土壤中甲烷通量的变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aerated soils represent an important sink for atmospheric methane (CH4), due to the effect of methanotrophic bacteria, thus mitigating current atmospheric CH4increases. Whilst rates of CH4oxidation have been linked to types of vegetation cover, there has been no systematic investigation of the interaction between plants and soil in relation to the strength of the soil CH4sink. We used quasi-continuous automated chamber measurements of soil CH4and CO2flux from soil collar treatments that selectively include root and ectomycorrhizal (ECM) mycelium to investigate the role of rhizosphere activity as well as the effects of other environmental drivers on CH4uptake in a temperate coniferous forest soil. We also assessed the potential impact of measurement bias from sporadic chamber measurements in altering estimates of soil CO2efflux and CH4uptake. Results show a clear effect of the presence of live roots and ECM mycelium on soil CO2efflux and CH4uptake. The presence of ECM hyphae alone (without plant roots) showed intermediate fluxes of both CO2and CH4relative to soils that either contained roots and ECM mycelium, or soil lacking root- and ECM mycelium. Regression analysis confirmed a significant influence of soil moisture as well as temperature on flux dynamics of both CH4and CO2flux. We further found a surprising increase in soil CH4uptake during the night, and discuss diurnal fluctuations in atmospheric CH4(with higher concentrations during stable atmospheric conditions at night) as a potential driver of CH4oxidation rates. Using the high temporal resolution of our data set, we show that low-frequency sampling results in systematic bias of up-scaled flux estimates, resulting in under-estimates of up to 20% at our study site, due to fluctuations in flux dynamics on diurnal as well as longer time scales.
机译:加气土壤由于甲烷营养细菌的作用,代表着大气甲烷(CH4)的重要汇,从而缓解了目前大气中CH4的增加。虽然CH4的氧化速率与植被的类型有关,但还没有系统地研究植物与土壤之间的相互作用以及CH4沉降池的强度。我们使用准连续自动室测量土壤衣领处理中土壤CH4和CO2流量的方法,该处理选择性地包括根和根外生菌根(ECM)菌丝体,以研究根际活动的作用以及其他环境驱动因素对温带针叶林土壤中CH4吸收的影响。我们还评估了零星室测量的测量偏差对改变土壤CO2排放和CH4吸收估算值的潜在影响。结果表明,活根和ECM菌丝体的存在对土壤CO2排放和CH4吸收具有明显的影响。单独存在ECM菌丝(无植物根)表明,相对于含有根和ECM菌丝体或缺乏根和ECM菌丝体的土壤,CO2和CH4的通量中等。回归分析证实了土壤水分和温度对CH4和CO2流量通量动态的显着影响。我们进一步发现夜间土壤中CH4的摄入量出人意料的增加,并讨论了大气中CH4的昼夜波动(夜间稳定的大气条件下浓度较高)作为CH4氧化速率的潜在驱动因素。使用我们的数据集的高时间分辨率,我们表明低频采样会导致按比例增大的通量估计值出现系统性偏差,由于研究通量的波动,导致我们的研究地点的低估率高达20%日间以及更长的时间范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号